Search results for "braid groups"

showing 6 items of 6 documents

Categorical action of the extended braid group of affine type $A$

2017

Using a quiver algebra of a cyclic quiver, we construct a faithful categorical action of the extended braid group of affine type A on its bounded homotopy category of finitely generated projective modules. The algebra is trigraded and we identify the trigraded dimensions of the space of morphisms of this category with intersection numbers coming from the topological origin of the group.

[ MATH ] Mathematics [math]Pure mathematicsGeneral MathematicsCategorificationBraid groupGeometric intersection01 natural sciencesMathematics - Geometric TopologyMorphismMathematics::Category TheoryQuiverMathematics - Quantum Algebra0103 physical sciencesFOS: MathematicsQuantum Algebra (math.QA)Representation Theory (math.RT)0101 mathematics[MATH]Mathematics [math]MathematicsHomotopy categoryGroup (mathematics)Applied Mathematics010102 general mathematicsQuiverBraid groupsGeometric Topology (math.GT)16. Peace & justiceCategorificationCategorical actionBounded functionMSC: 20F36 18E30 57M99 13D99010307 mathematical physicsAffine transformationMathematics - Representation Theory
researchProduct

A note on the Lawrence-Krammer-Bigelow representation

2002

A very popular problem on braid groups has recently been solved by Bigelow and Krammer, namely, they have found a faithful linear representation for the braid group B_n. In their papers, Bigelow and Krammer suggested that their representation is the monodromy representation of a certain fibration. Our goal in this paper is to understand this monodromy representation using standard tools from the theory of hyperplane arrangements. In particular, we prove that the representation of Bigelow and Krammer is a sub-representation of the monodromy representation which we consider, but that it cannot be the whole representation.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Pure mathematicsLinear representation[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid group20F36Group Theory (math.GR)52C3001 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]52C35Mathematics - Geometric TopologyMathematics::Group TheoryMathematics::Algebraic Geometry[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesFOS: Mathematics20F36 52C35 52C30 32S22braid groups0101 mathematicsMathematics::Representation TheoryComputingMilieux_MISCELLANEOUSMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT][MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]linear representations010102 general mathematicsRepresentation (systemics)FibrationSalvetti complexesGeometric Topology (math.GT)Mathematics::Geometric TopologyHyperplaneMonodromy010307 mathematical physicsGeometry and TopologyMathematics - Group Theory32S22
researchProduct

MR 2776821 Reviewed Berger E. Hurwitz equivalence in dihedral groups. The Electronic Journal of Combinatorics 18 (2011), no.1, paper 45, 16 pp. (Revi…

2011

In the paper under review, the author studies the orbits of the action of the braid group B_{n} on G^{n} where G denoted a dihedral group. At first, the author considers tuples T consisting only of reflections. In this case, the author proves that the orbits are determinate by three invariants. These invariants are the product of the entries, the subgroup generated by the entries and the number of times each conjugacy class is represented in T. Successively, the author works with tuples whose entries are any elements of dihedral groups. The author shows that, also this time, the above invariants are sufficient in order to determinate the orbits of the action of B_{n} on G^{n}.

braid groups dihedral groups.Settore MAT/03 - Geometria
researchProduct

The HOMFLY-PT polynomials of sublinks and the Yokonuma–Hecke algebras

2016

We describe completely the link invariants constructed using Markov traces on the Yokonuma-Hecke algebras in terms of the linking matrix and the HOMFLYPT polynomials of sublinks.

MSC: Primary 57M27: Invariants of knots and 3-manifolds Secondary 20C08: Hecke algebras and their representations 20F36: Braid groups; Artin groups 57M25: Knots and links in $S^3$Pure mathematicsMarkov chainGeneral Mathematics010102 general mathematicsYokonuma-Hecke algebrasGeometric Topology (math.GT)Linking numbers01 natural sciencesMathematics::Geometric TopologyMatrix (mathematics)Mathematics - Geometric TopologyMarkov tracesMathematics::Quantum Algebra[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)010307 mathematical physics0101 mathematicsRepresentation Theory (math.RT)Link (knot theory)Mathematics - Representation TheoryMathematics
researchProduct

MR 3020148 Reviewed McMullen, C.T. Braid groups and Hodge theory. Mathematische Annalen, vol. 355 (2013), pp.893–-946. (Reviewer Francesca Vetro) 20F…

2014

In this paper, the author studies the unitary representations of the braid group and the geometric structures on moduli space that arise via the Hodge theory of cyclic branched coverings of P^1. In particular, the author is interested in the classification of certain arithmetic subgroups of U(r, s) which envelop the image of the braid group. The author investigates their connections with complex reflection groups, Teichm\"{u}lller curves, ergodic theory and problems in surface topology.

braid groups cyclic branched coverings moduli spaces.Settore MAT/03 - Geometria
researchProduct

Conjugacy problem for braid groups and Garside groups

2003

We present a new algorithm to solve the conjugacy problem in Artin braid groups, which is faster than the one presented by Birman, Ko and Lee. This algorithm can be applied not only to braid groups, but to all Garside groups (which include finite type Artin groups and torus knot groups among others).

Conjugacy problemBraid group20F36Geometric topologyGarside groupsGroup Theory (math.GR)0102 computer and information sciencesAlgebraic topology01 natural sciencesTorus knotCombinatoricsMathematics - Geometric TopologyMathematics::Group TheoryMathematics::Quantum AlgebraFOS: MathematicsAlgebraic Topology (math.AT)Mathematics - Algebraic Topology0101 mathematics20F36; 20F10MathematicsSmall Gaussian groupsAlgebra and Number Theory010102 general mathematicsConjugacy problemBraid groupsGeometric Topology (math.GT)Braid theoryMathematics::Geometric TopologyArtin groups010201 computation theory & mathematicsArtin group20F10Mathematics - Group TheoryGroup theory
researchProduct